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Summary:  The paper presents a method of determining the transmittance of circuits 
with distributed parameters, in this case a transmission line consisting of a cascade of 
identical four-terminal networks. To construct the transmittance, signal flow graph theory 
was used. The result is provided in the form of a rational function which has two single 
poles and four multiple poles ((N-2)-tuple poles), if network consists of N four-terminal 
networks loaded with resistance. On the basis of the transmittance we calculated load 
voltage with unit step function or rectangular pulse at the input. Conclusions on 
transmission possibilities for digital signals have been formulated on the basis of obtained 
results. 
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PROPAGACJA IMPULSÓW PROSTOKĄTNYCH W KASKADZIE 
CZWÓRNIKÓW 

 
Streszczenie: W pracy przedstawiono metodę wyznaczania transmitancji 

operatorowej obwodów o parametrach rozłożonych – linii długiej w oparciu o kaskadę 
jednakowych czwórników. Do konstrukcji tej transmitancji wykorzystano teorię grafów 
przepływu sygnałów. W wyniku otrzymano wyrażenie w postaci funkcji wymiernej, 
która posiada dwa bieguny jednokrotne i cztery bieguny N-2 krotne przy N czwórnikach 
obciążonych rezystancją. Na podstawie transmitancji obliczono przebieg napięcia na 
obciążeniu przy wymuszeniu funkcją jednostkową i impulsem prostokątnym. Uzyskane 
wyniki pozwoliły na sformułowanie wniosków dotyczących możliwości transmisyjnych 
dla sygnałów cyfrowych.. 

 
Słowa kluczowe:  stany nieustalone, transmitancja, kaskada jednakowych czwórników. 

1. INTRODUCTION 

The issue of propagation of rectangular pulses in cascade-connected four-terminal 
networks is strictly related to analysis of transient states in transmission lines. This problem 
has been discussed in relatively few publications. Solution of telegraph equations by using 
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finite difference method together with Fehlberg method has been proposed in [1]. Two-
dimensional Laplace transformation has been applied in [2,4], but to lossless lines only. 
Method of finite differences in distance and time domain as well as time and frequency 
domain has been used for lossless lines in [3]. Investigation of transient states of signal 
propagation in transmission line has been discussed in [6]; problem has been examined from 
the viewpoint of utilizing the results for identifying location of damage in the line. 
Transmission line has been subjected to differently shaped input signals and alterations in 
waveform shape have been analysed after signals had passed through a definite number of 
four-terminal networks. In current paper we have used transfer function for cascade consisting 
of identical four-terminals networks, characterised by lateral and longitudinal loss elements 
both; this transfer function has been determined earlier (see [7,8]).  

2. TRANSFER FUNCTION OF FOUR-TERMINAL NETWORK CASCADE  

The following formula for transfer function of n identical “G-type” four-terminal 
networks has been presented in [8]:  

  
   1))((12))((

2))((
)(

0000

22
0000

3
0000




 



sGGsLRsGGsLR

sGGsLR
sT n

n

 (1) 

where: R0, L0, G0, C0 – parameters of single four-terminal network (p.u. parameters of 
transmission  line), G2 – load conductance. 

When inverse transform is calculated, poles of transform (1) are of tremendous 
importance. Transform has two single poles for 0 0 2 0 0( )( ) 1 0R sL G G sC     : 

 
 (2) 

and four multiple poles ((n-2)-tuple) for  20 0 0 0( )( ) 2 1 0R sL G sC      

 
 (3) 
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Analysing expressions (2) and (3) we may easily arrive at a conclusion that all poles will 
be real. This means that there will be no oscillations in the circuit, when for single poles  

  (4) 

and for multiple poles: 

  (5) 

If we assume that leakage conductance is very small (G0 ≈ 0), and load resistance is very 

high (G2 ≈ 0), then all poles will be real if 0
0
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Unfortunately, in case of power transmission and telecommunication lines this condition 
is not fulfilled, so that poles will be complex and conjugate in pairs, with negative real parts.  

In order to determine inverse transform of transfer function (1), we have used partial 
fraction expansion [5]. In spite of the fact that this method is very simple since it is 
established upon well-known algebraic decomposition of rational function into partial 
fractions and calculation of inverse transform separately for each fraction, its interpretation 
may be shown basing on Laurent series theory, while fraction coefficients are equivalent to 
residue of function (1) in the neighbourhood of singular points (i.e. poles).  

Hence, transfer function (1) may be presented as sum of partial factors [5] 

 
 (6) 

where coefficients Cik are expressed as  

 
 (7) 

Coefficients C5 and C6 relate to single poles and may therefore be calculated with the help of 
Heaviside expansion formula: 

 
 (8) 

Finally, inverse transform of transfer function (1) is equal to:  

 
 (9) 

In order to calculate circuit response to input function expressed with U(s) transform, we 
must calculate inverse transform of the product U(s)T(s); this means in practice that for dc 
input we must introduce additional pole s7 = 0, and in case of sinusoidal input two conjugated 
poles must be added s7,8 = ±j. 
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3. RECTANGULAR FUNCTION INPUT  

Input function in the form of single rectangular pulse with amplitude A and width a > 0 
(step function) may be expressed as:  

 
 (10) 

and its transform is: 

 
 (11) 

Voltage transform at the end terminals of cascade consisting of n identical four-terminal 
networks is equal to:  

 (12) 
where factor e-as is shift in time domain by value a. 
Inverse transform of this voltage, i.e. voltage versus time waveform (12) is equal to:  

 (13) 
Equations (7) and (8) are still true when L1(s)=AL(s) is substituted for L(s) and 

N1(s) = s N(s) is substituted for N(s). 

4. NUMERICAL CALCULATIONS  

Numerical simulations have been run in MATLAB environment, programs have been 
invented by authors of this work.  

 
Fig.1. Voltage course at end terminals of the cascade constructed of N=4-8 four-terminals network 

a) Heaviside step function input, b) rectangular function input with a= 0.5, 1.5, 2.5, 3.5 *10-4
 

s for N = 8 
Rys.1 Przebieg napięcia na końcu kaskady przy wymuszeniu przy N=4-8 czwórnikach:  

a) skokiem jednostkowym, b) impulsem prostokątnym o szerokości a= 0.5, 1.5, 2.5, 3.5 
*10-4

 s dla N = 8 
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Determination of Cik coefficients (7) has proved to be most difficult since derivatives of 
ratio L(s)/N(s) in symbolic form had to be calculated. MATLAB environment makes such 
calculations possible, but for derivatives of higher orders (> 6) calculation time increases 
considerably. That is why results presented here relate to limited number of four-terminal 
networks only (N=8). Analysing waveforms shown in Fig.1a we may notice that with 
increasing number of four-network terminals voltage delay at the end terminals of the cascade 
is increased (this is intuitively understood). This effect bears significant influence on signal 
received when input function is rectangular (Fig.1b). For a given line we may determine 
minimum pulse width time, for which output signal may be correctly interpreted. Maximum 
transmission speed is a consequence of the determined signal width.  

5. CONCLUSIONS 

Analysis of lossy circuits with distributed parameters in dynamic states may be rated 
amongst most difficult problems in the circuit theory. In majority of cases there is no 
analytical solution of the problem; the only possible way of obtaining information about 
current and voltage waveforms is by applying approximate methods of numerical integration. 
The method presented in current paper is based upon cascade connection of identical four-
network terminals and makes it possible to determine transfer function of N four-terminal 
networks and then voltage U2(s) at end terminals of this circuit provided that transform of 
input function is known. When inverse transform of this voltage is calculated, we obtain 
voltage waveform (voltage versus time).  

Analysing obtained waveforms, we may easily observe that with increasing number of 
four-network terminals voltage delay at the end terminals of the cascade is increased. If 
rectangular input function is characterised by too narrow signal, it may cause faulty 
interpretation of output signal. Therefore, for a given line we may determine maximum 
transmission speed of such signals.  
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