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APPROXIMATE BEM ANALYSIS OF THIN ELECTROMAGNETIC
SHIELD

Summary. A method of approximate analysis of a thin electromagnetic shield is
considered and proposed in the paper. Due to presumably small thickness of the shield, its
numerical analysis is troublesome. Applying the Boundary Element Method (BEM) to
solve equations for a thin shield creates two difficulties: significant increase of the
number of algebraic equations, and the presence of nearly singular integrals. The
proposed model avoids them both by using an approximate analytical solution for the
shield. Numerical examples confirm its usability.
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PRZYBLIZONA ANALIZA CIENKOSCIENNEGO EKRANU
ELEKTROMAGNETYCZNEGO Z UZYCIEM MEB

Streszczenie. W pracy zaproponowano przyblizong metod¢ analizy pola
elektromagnetycznego w otoczeniu cienko$ciennego ekranu elektromagnetycznego
z zastosowaniem metody elementow brzegowych (MEB). Z powodu zalozonej
niewielkiej grubosci ekranu analiza numeryczna napotyka na problemy. Zastosowanie
MEB niesie ze sobg dwie trudno$ci: znaczny wzrost liczby roéwnan algebraicznych oraz
obecnos$¢ catek prawieosobliwych. Przedstawiona metoda unika obydwu trudnosci
poprzez zastosowanie przyblizonego analitycznego rozwigzania w obszarze ekranu.
Zaprezentowane przyktady numeryczne potwierdzajg jej uzyteczno$¢ w rozpatrywanej
klasie zagadnien.

Stowa kluczowe: MEB, cienkie powltoki, ekranowanie elektromagnetyczne, rOwnanie Helmholtza

1. INTRODUCTION

Some sort of equipment needs electromagnetic (EM) shielding, which can be achieved by
placing it in a conductive shell (enclosure). Analysis of EM field in such a configuration
requires solving the field equations at least in three regions. Besides, geometrical complexity
of the problem involves numerical methods. One of such methods can be BEM (boundary
element method) [1, 2, 6, 10, 13], especially, if the exterior extends considerably. However, if
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the shield is relatively thin, the problem of suitable discretization of its surface appears. In
addition, some BEM integrals become nearly singular, what requires specific treatment and
enlarges the overall computational effort. For that reason, such thin shells should be treated in
a special way. For example, thin shells have been considered in [3-5, 7-11], to recall a few
only. This paper presents an approximate method of reducing the BEM equations arising in
EM shielding analysis. For simplicity, the considerations are limited to 2D problems.

2. PROBLEM DESCRIPTION AND BEM ANALYSIS

2.1. Problem description and governing equations

An EM shield, €4, is placed in free space, Qo, and encloses the protected region, Q> — Fig.
1. The external and internal surfaces of the shield are referred to as Si and Sy, respectively.
The shield is considered to be very thin of constant thickness d, relative permeability ur =
const, and electric conductivity y1 = const, while « = o and y = 0 in the protected region and
the free space. Such a configuration is affected by an external transverse harmonic magnetic
field, Bs, of angular frequency w.

Bs @ i Qo po y=0
e
—
= (&2 2)
d Hr1s V1 ! z X

Fig. 1. Problem description
Rys. 1. Konfiguracja obliczeniowa

In 2D problems the vector magnetic potential A (B = VxA) can be chosen to have only a
z-component. Time harmonic dependency of excitation Bs permits using the phasor notation.
The phasor of the z-component of vector magnetic potential A fulfills the following equations
in particular regions [12, 14]:

vZAM o for Q,,, m=0, 2, M
vZAD _x2a® =0 for Q. '
where
K% = joupon, )

and j is the imaginary unit. Field continuity conditions on boundaries S; and S are as follows:
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Far from the shield, theoretically — in the infinity, where the influence of the shield, the vector
magnetic potential tends to the vector magnetic potential of externally applied magnetic field:

A=A, (®)

where As is chosen so that

B, =Vx(Al,). (6)

2.2. Standard BEM model

The standard BEM applied to this problem leads to the following system of equations:
HIP AL =G + A
HOAD + HOAD = cPQY + PP | @)
2) A2 2)A (2
H(z)A(z):G(z)Q(z)

Vectors A™ and Q™ contain nodal values of A™ and 6,A™ on boundary Si. Vector As
contain nodal values of potential As on boundary Si. Matrices GI(™ and H\™ are built from

boundary integrals gi(j’l‘(“) and hﬁﬂ“) , respectively, where

oG (m

ol = [N G™ds,  hi = [N, ds, ©)
S

Sj i

where N are shape functions used for approximation of A and 6»A in boundary elements, and
G™ js the fundamental solution of equation for domain Qm. The fundamental solution
depends on the distance, R, between arbitrary point i and point P lying on boundary S. It
equals

G(R):Z—lnln% ©)

for x = 0 (domains Qo and Q>), and
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G(R) = % Ko (R) (10)

for k # 0 (domain 1), where Ko is the modified Bessel function of the second kind of order 0.
Detailed construction of matrices G{™ and H,™ is presented in [2, 6, 10].
Boundary conditions (3) and (4) rewritten in discrete form are as follows:

AD—aA®=-pn,  AP=AP =A,, (12)
QA =—pf’. QY =-QY, (12)
where
1
p=—. (13)
Hr1

The final equations can be written as

Al
H§0) ,BG£O) 0 0 o® As
HO GO HY —c® 1=t lo)ol, (14)
2 a0 || A2
00 HY PG| Lo
2

The system of equations, from now on referred to as the standard BEM model, is
mathematically correct for any values of parameters (such as d, B, As, boundary shapes).
However, numerical tests show that small values of d can be troublesome. This is because the
integrands in integrals (8) can have very sharp peaks (but still finite). Such integrals are called
nearly singular, by analogy to singular integrals, whose integrands have infinite peaks.
Numerical evaluation of nearly singular integrals require a considerable computational effort,
and even then can lead to significant numerical errors. Moreover, since corresponding nodes
on S; and S, become very close, the BEM equations for them are almost linearly dependent.
These two disadvantages lead to troubles during numerical computations.

2.3. Approximate BEM model

There are some methods of avoiding the aforementioned disadvantages [3-5, 7-11]. The
one presented here consist in using a semi-analytical solution in the thin shield. The first idea
that comes on mind is similar to presented in [3, 5], and consists in expanding the solution in
the shell into power series. As a result, the values of A and 6hA at the corresponding points
lying on boundaries S; and S, are connected with the following approximate relationship:
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w_0A| _A-A 15
91 on |Sl d ' (15)

Unfortunately, this implies 9(21) =—c_g§1), and no information on value of x can be introduced

into the equations. Therefore, this approach must be rejected, and a method of taking into
account x must be found.

To achieve this, observe that if the shield is thin enough and the BEM discretization is
fine enough, the shell between two corresponding boundary elements lying on S; and S; may
be approximately regarded as a fragment of infinite plate. In such a plate the general solution
of the second of Egs. (1) for x # 0 can be expressed as

A(x) =C; coshrx+C,sinh xx, (16)

where C1 and C; are constants. Assuming that A(0) = A1 and A(d) = A2, one can eliminate the
constants and obtain

_ A;sinhx(d —x) + A, sinh xXx

A(X , 17
AR sinh xd (0
and consequently,
%:K—Alcosh;c(q—x)+Azcoshxx. (18)
OX sinh xd
Therefore, the normal derivatives of A for x =0 and d, can be expressed as
oA
Q= =R, (19)
oA
_2=a_;d =—TtA +0A,;, (20)
where
:KC-ZOSth’ — K . 21)
sinh xd sinh xd

Applying Egs. (19) and (20) to the thin shield yields the following approximate relationships:

QY ~oA -A,, QY x—1A +0A,. (22)

It is worth noting that the approach described in [3, 5] can be obtained exactly in the
same way. In fact, Egs. (21) for k — 0 give
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lim ¢ = lim ‘L’Zl, (23)
x—0 x—0 d

and relationship (19) becomes identical with (15).
Using Egs. (22) in (14) allows eliminating the BEM equations for the shield. The
resulting equations are as follows

HO+opl®  —® (A _[A on
G2 HP +opGR | A |0

In the subsequent paragraphs, the system of equations is called the approximate BEM model
(ABEM). It has half the number of equations given by the standard BEM model (14) and no
nearly singular integrals occur in it (for sufficiently regular boundary). However, one should
keep in mind that this model is a result of assumption that the shell can be locally treated as
planar. In fact, this not always may be acceptable, but there are situations in which it should
work well.

3. NUMERICAL RESULTS

3.1. General remarks

Both models were implemented in Mathematica 7.0 and tested in various conditions. The
considered shields were long cylinders of very thin walls and constant cross-section. It was
assumed that the externally applied magnetic field Bs was uniform and had the following form

Bs=Bol,, Ay=Byy. (25)

Two kinds of boundary elements were used in numerical tests: constant (with one node in
the midpoint) and quadratic (with three nodes in the beginning, midpoint and endpoint). This
refers, however, only to the field approximation (A and J,A), since the geometry was always
approximated with quadratic curves. This allowed taking into account the shape of boundary
quite precisely. The same set of nodes was used for both kinds of elements.

Equation systems (14) and (24) were solved with use of Mathematica’s built-in routines
(LinearSolve). Integrals (8) were evaluated as follows:

o for Laplace equation (domains €0 and £>): analytical integration for straight geometry,
special treatment with use of logarithmic Gaussian quadrature for singular cases and
curvilinear geometry, numerical integration according to the four-zoned scheme described
thoroughly in [3],
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e for Helmholtz equation (domain €, only the standard BEM): special treatment with
singularity exclusion for singular cases, numerical integration based on the four-zoned
scheme for non-singular cases.

The four-zoned scheme introduces four zones, whose limits are determined by the
endpoints of a boundary element and three parameters 0 < s; < s» < 3 < c0. Depending on the
zone in which point i is located, different integration method or quadrature order is used, in
accordance to the rule: “the closer the point to the boundary element the more refined
integration”. In the nearest zone, the Mathematica’s built-in function (NIntegrate) is used
to gain appropriate accuracy with minimal programming effort, and in the other zones — the
Gaussian quadrature of orders GQO1 > GQO2 > GQOz > 0 (to decrease computation time).
Plots show the actual values of the integration parameters as “>51:GQ01>8,:GQ02>s3:GQ0O3”.

3.2. Cylindrical shield

The first benchmark problem was a cylindrical shield of circular cross-section (Fig. 2),
whose internal and external radii were R2 and R1 = R2 + d, respectively. It was used to check
the validity of both models, because it has an analytical solution, which is as follows:

~WRZ ) r
AQ =g R|1+ YY1 T giny, 26
- 0 l{ V+W r2 Rl v ( )

2 )
AY =B R, —=—[ply (k1) — gK (x)]sin ¢, (27)
V+W
A® _g R AL T G (28)
v+w Ry

where 11(z) and K1(z) are modified Bessel functions of the first and second kind of order one,
respectively, g is given by Eq. (13), J is the relative thickness of the shell defined as

5= R% , (29)
and
p = K;(xkR,) — frxRyK{(kR5) , (30)
q=11(xRy) — xR, 1{(xR5), (31)
v = ply(xRy) — qK, (kRy) , (32)

W= ARy Pl (Ry) — K (+Ry)] (33)
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Fig. 2. Cylindrical EM shield in a transverse uniform time harmonic external magnetic field
Rys. 2. Cylindryczny ekran EM w poprzecznym rownomiernym harmonicznym polu magnetycznym

The approximate BEM model uses relationships (22). It is worth to investigate if they are
applicable for cylindrical shield. To find it out it is necessary to evaluate the equivalents of
coefficients ¢ and z and compare them with expressions (21). From Egs. (26) and (28) through
continuity conditions (3) one obtains, respectively

LAY
:A(O) =ByR, ——sSinp,
B =A r=R 0 1v+w ¢
20 .
A :A(Z) =ByR, ——singp.
o =N r=R, 0 1v+W ®

The same equations with continuity conditions (4) lead to expressions for the normal
derivatives on S; and Sz:

1) (0)

Q(l)_% :la_A — OEZ—WSin ,

X1 or B or LV+WwW

=Ry r:R]_
1) (2)
QW __0A”| __10A _ g, 2+ g,
=2 or /B or V+W
r:R2 r:RZ

By requiring to satisfy the following relationships:

9&1) =0' A —T' Ay,
QY =—c'A +0'A,,
one finds that

o1 wWv+ (1+5) B2 o1 v@+o)+w

, 34
ﬂRl V2 _ﬁZ Rl V2 _ﬂZ ( )

These expressions for small ¢ should be compared with those given by Egs. (21). It is
convenient to introduce the dimensionless parameter K defined as
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K=1Ry =k +]k. (35)

Since kR1 = kR2(1 + 0) = K + Ko, quantities (30)-(33), and consequently (34), can be
expressed in terms of dimensionless parameters ¥, ¢ and . The goal is to consider their
approximate values for small ¢. This is considered separately for | K| << 1 and |K9| > O(1). If
A is the skin depth for the shield, it holds

f@:m:%a+p. (36)

Thus, case |Xd| << 1 is equivalent to d << 4, what corresponds to a small attenuation in the
shield, while |X9| > O(1) is equivalent to d > O(4) — a relatively large attenuation.

Beginning with the last case, observe that it implies |x] >> 1 (since ¢ << 1). Therefore,
using the following asymptotic expansions for |z| >> 1:

L(2) ~ 1(2) zﬁez, Kl(Z)z—Ki(Z)z\/ge‘z, @37)

it is easy to show that

Ve sinh K9 + K coshxo

X , W= f(coshx9 + SK sinh K9),
and consequently, after some transformations

, coshxd , 1
XK — =0, T RK— =7
sinh xd sinh xd

(38)

It is worth noting that # does not matter at all in this case.
If | K| << 1, we can use expansions into power series of K¢. Using various identities for
Bessel functions, like

, : 1
Iv(Z)Kv(Z)_ IV(Z)KV(Z) = ;!
or just Mathematica’s function Series, it can be shown that up to linear terms in X9, u and v
are

Vr B+46,  WrB+(1+K2)B%,
yielding

[L+@+k2)pO0+[2+ W+ kD)1 1 O+[2+1+K7)po)B
5+2p ! T d S+2p '

'
o

1
< 39
d (39)
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As long as
‘1+ 7(2‘/35 <1, (40)

both ¢’ and 7’ simplify to 1/d, just as ¢ and 7 (see Eg. (23)). Certainly, this holds for
sufficiently small g0 (i.e. urn >> 0), what includes both magnetic and non-magnetic shields in
static as well as low-frequency magnetic fields. Concluding, Egs. (21)-(22), and consequently,
the approximate BEM model (24), should work properly for any values of |x]. Although the
considerations concern a cylindrical shield, it seems to be in force also for shields of other
shapes. This is confirmed in the subsequent numerical simulations.

Both models, the standard and approximate, were tested for various values of parameters
0, kand g, with quadratic or constant boundary elements. Results of numerical computations
for exemplary values of parameters are shown in plots of boundary values of A and B: =
—0nA® (with normal direction outwards the shield). Values of A are given in units of BoR1,
values of B; in units of Bo and the horizontal axis identifies the index of boundary node. In
some cases, plots of errors of potential (6A) and tangential component of magnetic field
intensity (6Bx) in particular boundary nodes are more informative. The errors are defined as
follows:

A A

SA==num_=th 10004, (41)
A
max
5B, =2num ~Bun 1500, (42)
=tthimax
Bl

where “th” and “num” refer to the theoretical value and its numerical estimate, respectively.
Quantities |Ath|max and |Bit|max are the maximal values of |Aw| and |Bin| on boundary Sz or S,.

Figure 3 shows values of |A| and |By| for 0 = 0.1, £= 10, x«1 = 1 and 1000, and constant
boundary elements (for quadratic elements the results are very similar). This cases correspond
to a relatively thick non-ferromagnetic or ferromagnetic EM shield. The approximate model
gives quite accurate results, although the standard BEM is more accurate in this case (due to
large enough 9).

Figure 4 show values of |0A| and |0By| for 6 = 0.01, £ = 10, ur1 = 1 or 1000 for constant
boundary elements, and Figure 5 — for quadratic elements. In both cases, the approximate
BEM model gives errors comparable with the standard BEM model, and they usually are
below 1%. Surprisingly, quadratic elements give unpleasant oscillations in boundary values,
and errors |0Bq| are larger for the standard BEM.

Figure 6 show values of errors |0A| and |0By| for the same parameters, except for £ = 100,
and constant elements. This time the approximate model gives more accurate results, with
errors below 1%, whereas the standard BEM leads to considerable errors.
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Fig. 3. Magnitudes of potential A (a, ¢) and tangential component of magnetic flux density B: (b, d)
on boundaries S; and S, for 6 = 0.1, £= 10 with x1 =1 (a, b) or ur1 = 1000 (c, d)
Rys. 3. Magnitudy potencjatu A (a, c¢) i skladowej stycznej indukcji magnetycznej B: (b, d)
na brzegach S1iS;dlad =0.1, k=10 0oraz urn = 1 (8, b) i 2 = 1000 (c, d)
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Fig. 4. Magnitudes of errors JA (a, ¢) and 0B (b, d) on boundaries S; and S, for 6 = 0.01, £ = 10 with
w1 =1 (a, b) or 41 = 1000 (c, d) for 32 constant elements

Rys. 4. Magnitudy btedow JA (a, ¢) i JB; (b, d) na brzegach S; i S; dla § =0.01, £=10 oraz un =1 (a,
b) i i = 1000 (c, d) dla 32 elementéw statych
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Fig. 5. Magnitudes of errors JA (a, ¢) and 0B: (b, d) on boundaries S; and S, for 6 = 0.01, £ = 10 with

=1 (a, b) or 41 = 1000 (c, d) for 16 quadratic elements
Rys. 5. Magnitudy btedow JA (a, ¢) i 6B (b, d) na brzegach S, i S; dla 6 = 0.01, k=

b) i urn = 1000 (c, d) dla 16 elementéw kwadratowych
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Fig. 6. Magnitudes of errors JA (a, ¢) and 0B (b, d) on boundaries S; and S, for 6 = 0.01, £ = 100 with
w1 =1 (a, b) or 41 = 1000 (c, d) for 32 constant elements
Rys. 6. Magnitudy btedow JA (a, ¢) i JB (b, d) na brzegach S; i Sy dla § = 0.01, £= 100 oraz un =1 (a,
b) i i = 1000 (c, d) dla 32 elementéw statych
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Figure 7 concerns a thin (6 = 0.01) magnetic shield («1 = 1000) with £ = 0, what
corresponds to a static magnetic field (o = 0), or non-conductive shield (y1» = 0). Both models
give results of comparable errors. Since §/un = 107° << 1, the approximate model works well
also in this case.

a)
4 —
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-1 k=0 ~100 Ly ¥ tr1 = 1000
Mz = 1000 >0.3:10>2:8>4:6
>0.3:10>2:8>4:6 -150 Ergs® constant
2 constant

Fig. 7. Values of potential A (a) and tangential component of magnetic flux density B (b) on
boundaries S; and S, for 6 =0.01, £=0, ur1 = 1000

Rys. 7. Wartosci potencjatu A (a) i sktadowej stycznej indukcji magnetycznej B: (b) na brzegach S11i S,
dla¢d=0.01, £=0, urn = 1000

3.3. C-shape shell

To make sure the approximate model works good not only for shields of circular cross-
section, a more complicated shape was also tested. This was a C-shape shell of internal and
external radii a and 2a, respectively, and gap angle of 90°. The shape is visible in small insets
in Figure 8. The relative thickness was defined as ¢ = d/a, and the dimensionless parameter of
skin effect X = kK + jk = xa. Figures 8-9 show magnitudes of potential A and tangential
component of magnetic flux density Bt for several sets of parameter values.
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Fig. 8. Values of potential A (a) and tangential component of magnetic flux density B; (b) on
boundaries S; and S, of C-shape shell for 6 =0.02, £= 10, 1 = 1000

Rys. 8. Warto$ci potencjatu A (a) i sktadowej stycznej indukcji magnetycznej Bt (b) na brzegach S1i S,
powloki C-ksztattnej dla 6 = 0.02, K= 10, x1 = 1000
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Fig. 9. Magnitudes of potential A (a, ¢) and tangential component of magnetic flux density B (b, d) on
boundaries S; and S, of C-shape shell for 6 =0.02, £ =50 with u1 =1 (a, b) or x1 = 1000 (c, d)

Rys. 9. Magnitudy potencjatu A (a, ¢) i sktadowe;j stycznej indukcji magnetycznej B: (b, d) na brzegach
S11 Sz powltoki C-ksztattnej dla 0 = 0.02, k=50 oraz i1 =1 (a, b) i ur1 = 1000 (b, d)

Both models give similar results, although there are small differences (Figures 9a and d).
To find out which model is more accurate, additional tests involving comparisons with results
given by other methods are required. However, the differences are not large, so that even if
the approximate model is less accurate in these cases, its evident advantages (smaller system
of equations, no nearly singular integrals) should partially compensate its possible lacks.

4. CONCLUSIONS

The approximate BEM model, which combines BEM and semi-analytical solution, was
proposed as a method of analyzing the time-harmonic magnetic field nearby thin closed
shells, like long electromagnetic shields of constant cross-section, e.g. cylindrical. Small
thickness of such shells can be a serious problem in numerical computations. The standard
BEM model works well for sufficiently thick shells. For thinner shells it requires very
accurate evaluating of nearly singular integrals. Numerical tests showed that this can be
unreachable even with use of very sophisticated methods of numerical integration, like those
which have been built in the Mathematica. As a result, it can give considerable errors if the
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thickness of the shell is too small. On the other hand, the approximate BEM model works the
better the smaller ¢, and no nearly singular integrals need evaluation. Both theoretical analysis
of cylindrical shell of circular cross-section and numerical tests for various shaped shells
show that the approximate BEM model works well for large values of |«|, and also for smaller
|x| with additional requirement that J/ur1 should be sufficiently small. The conditions are
usually fulfilled in possible practical applications. It is interesting that constant elements
usually give smaller numerical errors than quadratic do (with the same set of field
approximation nodes and the same order of Gaussian quadratures).

The key advantages of the approximate BEM in comparison with the standard BEM, are:
e smaller equation system,
¢ no nearly singular integrals (for sufficiently regular boundary),
¢ no need to evaluate BEM integrals with fundamental solution (10),
e good for very thin shells.
The main disadvantage is that it uses an approximate solution for the layer, which cannot be
proved to be correct for all cases. Despite this, the approximate model is worth taking into
account. Its usability in the considered class of problems was confirmed. Further research
should focus on:
¢ introducing varying thickness,
¢ developing the model for open shells.
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